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Abstract 

In electron microscope studies of crystal defects, high- 
resolution detail is known to exist in the weak beams. 
The most popular calculational tools for predicting and 
interpreting this detail are systems of ordinary differen- 
tial equations based on the column approximation. We 
argue from analytical and numerical studies of Takagi's 
equation and certain other equations that the column 
approximation is unreliable for weak beams in the 
following specific sense. (i) The main image detail will 
not be where the column approximation would predict, 
but shifted to the left or the right by easily determined 
amounts. This shifting has the consequence that 
dislocation images, from two or more dislocations, will 
not be separated in space by the same lateral distance 
as the dislocations themselves unless the dislocations 
are all the same distance from the exit surface of the 
crystal. (ii) There is a very interesting fringe structure, 
due to the interference of waves within the character- 
istic triangle, that the column-approximation equations 
will never exhibit; these fringes, which grow in number 
with specimen thickness, are predicted to occur most 
prominently in images of point defects. 

1. Introduction 

In electron microscopy the use of weak beams to form 
high-resolution images of lattice defects is becoming 
increasingly commonplace. The most popular scheme 
for calculating (and thus understanding) such images 
involves the numerical solution of certain differential 
equations based upon the column approximation [see 
Cockayne (1972) for a review]. Clearly, it is of interest 
to have a general assessment of the reliability of this 
approximation in various situations of practical in- 
terest, and that is our goal here. Various authors 
(Jouffrey & Taupin, 1967; Howie & Basinski, 1967; 
Howie & Sworn, 1970; Riihle & Wilkins, 1975) have 
investigated the effect of relaxing the column approxi- 
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mation in specific diffracting situations. The conclusion 
of these authors is .that me effect of the approximation 
on the transmitted beam and any strongly diffracted 
beams is generally very small; Howie & Sworn (1970) 
add to this the general conclusion that the approxi- 
mation is reliable in the case of inner weak beams (that 
is, any beams propagating between the transmitted and 
a strongly diffracted beam). However, in the case of 
outer weak beams, Humphreys & Drummond (1976) 
have shown that the approximation is generally 
unreliable. Here we provide some rules for this 
situation. These rules are largely geometric in nature, 
and enable one to assess the error inherent in the 
column approximation. 

These geometric considerations follow from the 
recent work of Lewis & Villagrana (1975) on a 
particular function, for Takagi's equation, which 
represented scattering from a mathematical point defect 
in an otherwise perfect crystal, and also from numerical 
work that we report here. All of these various differen- 
tial equations involve the neglect of any extensive 
diffuse scattering well away from the diffraction 
maxima and this should always be kept in mind [see 
Lewis, Hammond & Villagrana (1975)for a discussion 
on this]. Indeed, the error involved in the whole 
differential-equation approach to high-energy electron 
diffraction, when the wave function is expanded in a 
modified Fourier series, is difficult to assess and clearly 
more work on this point would be desirable. We expect, 
however, that our considerations here are of a 
sufficiently geometric nature that they take on a validity 
outside of the particular equations which we consider, 
but future work will have to establish this. In any event, 
many of our predictions can be tested in various high- 
resolution experiments. 

Our results are easily summarized. First, we argue 
that the Green function mentioned above is of special 
importance in understanding weak-beam images. This 
is because our numerical work on many-beam 
situations has shown that the analytical solution for the 
two-beam Green function in Lewis & Villagrana (1975) 
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captures the two essential features of scattering from a 
localized defect. The first feature is that image detail, 
for a particular beam, propagates primarily at an angle 
#g to the normal to the crystal entrance surface. This 
angle is given by tan fkg = ( K  x + g ) / K  z for the very 
simplest situation of a set of systematic reflections {g} 
in the" zero-order Laue zone, where z is the coordinate 
normal to the crystal entrance surface, x is the co- 
ordinate normal to reflecting planes, and K the electron 
wave vector. The angle ~g equals the Bragg angle when 
a particular g lies on the Ewald sphere. In order to 
emphasize the connection with the hyperbolic nature of 
Takagi's equation, we suggest calling the ~g 'character- 
istic angles'. The column approximation sets all of these 
characteristic angles to zero; consequently, image 
information in the column approximation always 
propagates normal to the entrance surface in the z 
direction. Consider, as an example, weak-beam scatter- 
ing from a dislocation (weak beams perceive dis- 
locations as very localized defects); in the column 
approximation there will be an image peak very near 
the dislocation core that will always remain near the 
core no matter how far the core is from the exit surface. 
Without the column approximation, this peak will be 
seen to move farther and farther from the dislocation 
core as the distance from the core to the exit surface 
increases. This is solely a result of the characteristic 
angle for the weak beam being non-zero. Some samples 
of this effect are presented in the text. The second 
feature captured by the Green function is the inter- 
ference that develops between beams propagating at 
different angles ~g. This interference results in fringes 
that extend, for a particular beam, from the main image 
detail to either the left or the right depending on the 
beam. For the outer weak beam in which #g is negative 
the fringes extend to the right; for the outer weak beam 
in which #g is positive the fringes extend to the left (e.g. 
see Figs. 2 and 3). In the column approximation these 
fringes are completely absent. 

The plan of this paper is as follows: first, we present 
the usual geometric argument for the column approxi- 
mation that proceeds directly from Takagi's equation; 
then, we extend this argument by considering a formal 
expansion for the solutions of that equation in powers 
of tan J r  The lowest-order term is just the column- 
approximation solution; the first correction term 
involves x derivatives of the column-approximation 
solution, which are large in precisely the high-resolution 
weak-beam situation. Thus, we are able to see directly 
why the approximation breaks down in the outer weak 
beams. Then, we summarize the findings of Lewis & 
Villagrana (1975) concerning the Green function for 
point scattering in an otherwise perfect crystal and its 
relevance for the numerical calculations we present. 
The defects for which we calculate diffraction contrast 
images are a vacancy in copper and a dissociated dis- 
location in copper. 

2. Geometric considerations 

Let us first recapitulate the geometric argument for the 
column approximation in high-energy electron diffrac- 
tion. We consider, for simplicity, a two-dimensional 
specimen with coordinates x and z as defined in the 
In t roduc t ion .  Further notation will be exactly the same 
as in Lewis & Villagrana (1975) and will only be 
minimally redefined here. Now, under certain 
assumptions involving the localization of intensity in 
the diffraction pattern (so that the concept of locally 
diffracting waves takes on meaning), and the neglect of 
certain second-derivative terms (very small in the high- 
energy situation), one can obtain from the Schr6dinger 
equation a system of first-order equations first derived 
by Takagi: 

f 'D(x,z)-- (PO/cOz + Btg/ t?x)D(x ,z)  (1) 

= i A ( x , z ) D ( x , z ) .  

In the n-beam situation the matrices, I, B, and A are n × 
n, and the column vector D contains the n diffracted 
wave amplitudes dg(x , z ) .  Here I is the identity matrix 
and 13 is the diagonal matrix with elements given by Bg..h 
= 6g h tan #g. Thus, the directional-derivative operator I_ 
is entirely geometrical in nature, and contains no 
information about the potential of the crystal. Infor- 
mation about the crystal is contained in the matrix A. In 
this discussion we will only consider elastic scattering, 
which means that the A matrix is Hermitian. In a 
perfect crystal the matrix A becomes a constant in 
space; so that the integration of (1) becomes trivial for 
plane-wave boundary conditions yielding D(z) = 
exp(iAz)D(0). We see from this solution that for a 
perfect crystal the column approximation is rigorous, 
since this approximation is implemented by setting 13 to 
zero in (1). However, in the case of an imperfect crystal 
the argument for this approximation is as follows. 

First, one has to define a length which characterizes 
the local rate of change of the strain field of a given 
defect. Then, when this length is always much larger 
than a geometric length associated with I_, the column 
approximation should be valid. Let us be more precise 
in our argument. From the column-approximation 
equations one knows that the controlling length (for a 
set of systematic reflections ng, where n is an integer) is 
defined by A -1 = IO[g .R(x , z ) ] /Oz l ,  where R is a vector 
function describing the atomic displacements. Now, 
consider a solution to (1), for plane-wave boundary 
conditions, at a point P on the exit surface of the 
crystal. Because the differential operator f" is hyper- 
bolic, this solution has a region of determinacy. In our 
discussion this region is a narrow triangle, because for 
100 keV electrons the characteristic angles ~g are 
typically a few degrees with vertex at P. The base of the 
triangle is formed by a segment of the entrance surface 
of the crystal. Next, imagine drawing a line across the 
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triangle, parallel to the base, at an arbitrary depth z 
within the crystal. For any such depth, there will be a 
minimum value of the length Ami n (z) as x ranges across 
the line drawn. Suppose the line drawn has length l(z); 
then the column approximation to the solution at P 
should be valid if, for every depth z,  l (z)  < Ami n (z). 

This argument brings out a number of important 
features of the column approximation which are of 
practical importance for numerical calculations. Sup- 
pose the strain field we are talking about is associated 
with a dislocation; then, we can always find a column 
far enough away from the dislocation so that the above 
inequality is certain to be satisfied. This is important for 
numerical solutions (e.g. Howie & Basinski, 1967) of 
Takagi 's or other second-order equations of diffraction 
theory because sometimes the numerical solution needs 
to be 'stabilized' with the column-approximation 
solution at large distances from the defect. Another 
point is that the argument shows that the 'worst '  
situation, in the case of point defects or dislocations, is 
when the point P lies directly below the defect core. In 
this case the triangle of determinacy will enclose the 
region in which A reaches a minimum; however, note 
that the argument also implies that if the defect core is 
close enough to the exit surface of the crystal, the 
column approximation will still be valid. This is because 
the length that one should compare with, at a given 
depth, is always the width of the triangle at that  depth.  
This too has important numerical implications; it 
means that deviations from the column approximation, 
in the above sense, ' take time to grow' and thus justifies 
the use of local interpolation procedures in solving 
these equations. 

What  the above argument does. not demonstrate, 
however, is why the column approximation is most 
likely to break down for outer weak beams, yet often 
remains reasonable for inner weak beams and strong 
beams. Howie & Sworn (1970) and Humphreys & 
Drummond (1976) have put forth geometrical ex- 
planations of this observation based on considerations 
of the dispersion surface. We will complement their 
arguments by showing how it may also be deduced 
from the differential equation (1). We will do this by 
constructing a formal expansion in powers of the small 
matrix 13. 

As discussed in Lewis & Villagrana (1975), (1) is 
equivalent, for plane-wave boundary conditions, to the 
integral equation 

z o o  

D(x,z)  = Do(z ) + f f A ( x - -  x ' ;  z --  z ' )  ~A(x' ,z ' )  
0 - - o 0  

x D ( x ' , z ' ) d x '  dz' ,  (2) 

where we have written A = A o + 6A, A o being the 
constant perfect-crystal matrix, and D o is the perfect- 
crystal amplitude given by D o = exp (iA0z) Do(0). The 

basic object of the theory, the Green function A, is an 
n x n singular (in the distribution sense) matrix which 
has the integral representation 

oo  

A = O ( z -  z')(2z0 -~ f exp [ i k ( x -  x ' )  
- -oO 

--  i (kB - Ao)(Z - z')] dk, (3) 

where O(z - z ' )  is the unit step function. To see that A 
is in general singular, just set B = 0 (the column 
approximation) to obtain Acol. = O(z --  z ' ) J ( x  -- x ' )  
exp [iAo(z -- z')], where ~(x - x ' )  is the usual Dirac 
delta function. Now, we want to expand (3) formally in 
powers of B; there is a complication here because the 
matrices 13 and A 0 do not commute. However, if we 
introduce the commutator  operator [A 0 . . . .  ], defined by 
[A0,...]13 = (Aot 3 _ 13A0), [A ° . . . .  ]213 = [A0, Ao13 _ 
BA 0] = AZB - 2AoBA o + BA0 z, etc., then we can expand 
the integrand to order 13 by writing 

exp [--i(kB - Ao) (z -- z')] 

-= exp [iAo(z -- z')] 

{exp [--i(z  --  z')[A o . . . .  ] - 1 } 
x 1 +  [Ao, • • .] 

x Bk + O(B2)], (4) 

where the exponential of the commutator operator is 
defined by its power series and the operator in the 
denominator just cancels one power from every term of 
this series. This expansion can be substituted into (3), 
and the integral over k becomes trivial, just producing a 
delta function and a derivative of a delta function to 
this order. Then one substitutes this result for A into 
(2), and obtains an integral equation correct through 
order B. 

For simplicity, let us keep only one term of the power 
series of the commutator  operator that appears in (4); 
then the integral equation becomes 

D(x,z)  = D0(z) + i 6A(x,z ')  D(x ,z ' )  dz' 
0 

+ B(O/ctx) : (z -- z') A(x,z ' )  D(x ,z ' )  dz'.  
0 

(5) 

If B were zero, (5) would just  be the integral-equation 
version of the column-approximation equations; thus 
we can look for a correc t ion  to this solution by writing 
D(x,z) = Dcol(X,Z ) + JD(x,z) .  Consider the specific 
situation of a very localized defect so that JA is every- 
where very small except at one point a distance z e from 
the exit surface; then one obtains from (5), neglecting 
the term (6A)(JD), JD(x,z)  = zeB(O/OX)Dcol(X,Z), 
which is our final result. More generally, for an 
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arbitrary defect the first correction always involves 
derivatives of the column-approximation solution. In 
terms of components, this reads 

6dg(x,z) = (constant)ze(tan ~g)(O/OX)dg°I(x,z) (6) 

for an arbitrary point or line defect whose core is a 
distance z e from the exit surface. Equation (6) demon- 
strates why one should be very suspicious of weak- 
beam calculations in the column approximation. This is 
because the high-resolution detail in the weak beams 
means precisely that the x derivative is large, so that the 
correction 6dg is large. One also sees from (6) that the 
inner weak beams are somewhat better behaved in this 
manner because tan#g is correspondingly smaller, and 
we reproduce our previous geometric result that the 
column approximation will always be valid if the defect 
is close enough to the exit surface (i.e. when z, --, 0). 

This expansion in powers of B, due to its formal 
nature, is not very useful for practical computations. 
(We can invent situations where it converges to the 
wrong result.) Usually, one has no recourse but to solve 
(2), or equivalently (1), numerically. However, due to 
the considerations in Lewis & Villagrana (1975) of the 
behaviour of the Green function, A, one can under- 
stand the nature of the failure of the column approxi- 
mation in many instances. Let us summarize these 
considerations and their implications for weak-beam 
calculations. 

In the two-beam ease, A can be determined 
analytically and is found to consist of two terms: a 
singular diagonal matrix of delta functions and a finite 
matrix of oscillatory functions. The delta functions are 
singular on the two characteristics that form the sides 
of the characteristic triangle whose vertex is at the 
source point (x ' , z ' )  and whose base lies on the exit 
surface of the crystal. These delta functions, of which 
there is one per beam, represent the propagation of the 
primary image information; in the column approxima- 
tion one already has such a delta function, 6(x - x ' ) ,  
which restricts the propagation of image information 
to straight lines in the z direction. Thus, we can antici- 
pate, and we will see this confirmed by numerical 
examples, that often the effect of removing the column 
approximation is merely to send the image information 
along the '~mgles #g. We should also like to point out 
that the numerical evidence of this image shifting that is 
presented in this paper may be taken as support for the 
conjecture in Lewis & Villagrana (1975)that the many- 
beam Green function was qualitatively similar to the 
two-beam Green function in this respect. 

In order to determine just how much the calculated 
image of the defect will be shifted laterally with respect 
to an image calculated using the column approxi- 
mation, one merely constructs a triangle of deter- 
minancy with source point (x ' ,z ' )  at the defect core and 
traces straight lines, for the various beam directions, 
from the source to the exit surface of the crystal (see 

Fig. 1). Then if we form an image of the defect, using 
the gth maxima, it will be centered at the intersection of 
the gth characteristic with the exit surface. In other 
words, for a crystal of thickness t the column-approxi- 
mation image of the defect will always be located near 
the point (x ' ,  z = t), while the image formed with the 
gth maxima will be located near the point (xg, z = t), 
where 

xg = x '  + zetan~g (7) 

and xg is the x coordinate of the intersection of the gth 
characteristic with the exit surface. Equation (7) tells us 
that the column-approximation image will be position- 
ally correct only when the defect is very close to the exit 
surface of the crystal (i.e. as z e ~ 0), or when the gth 
characteristic is parallel to the z axis so that ~g = 0. 

The second implication of this analytical work is the 
existence of the oscillatory part of the Green function. 
This part has no correspondence in the column 
approximation and so represents qualitatively new 
behavior. There was some doubt in our analytical work 
as to whether these oscillatory amplitudes would be 
present in scattering from a real point defect (as 
opposed to a mathematical point defect); however, as 
we show in the next section our numerical work 
confirms the existence of these fringes. 

3. Numerical results 

3.1. Point defect 

All of the numerical work involves a comparison of 
the solution of the column-approximation equation, 
Takagi's equation and the second-order equation which 
one obtains when the term in (c~/c~x) 2 from the 
Schr6dinger equation is retained. We shall, for brevity, 
refer to the last two equations as the hyperbolic and 
parabolic equations. In no instance here did we detect 
any significant difference between the solutions to the 

0 +x 

z=l 

-g 000 g 

~ CIDENT ELECTRONS 

J (x',z') CRYSTAL 

2g 3g 411 

Fig. 1. Sketch of the triangle of determinacy for the six-beam 
calculations that are presented in this paper; also shown is the co- 
ordinate system. The defects considered in this work are centered 
on the source point (x',z'). 
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latter equations; this is because although in principle 
the parabolic equation cannot exhibit a triangle of 
determinacy, in practice the net effect of the second- 
derivative term is to contribute a small amount of 
image spreading outside of the triangle [for a discussion 
of this point, see Lewis, Hammond & Villagrana 
(1975)]. Consequently, we will only compare the results 
obtained with the parabolic equation and the column- 
approximation equation. 

All of the calculations presented in this section 
involve a set of six systematic reflections {ng}, with n --- 
- 1 ,  0, 1, _2, 3, 4 and scattering parameters appropriate 
for g = 202 in a (111) copper crystal, corrected for 
absorption and thermal vibration at 300 K. The defects 
are imaged with 100 keV electrons, and the reflection 
3g is set at the Bragg condition. 

Shown in Figs. 2 and 3 are solutions to the column- 
approximation and parabolic equations for a vacancy 
situated at a depth of 400 A in a crystal 1000/~, thick. 
We have assumed in these calculations that the strain 
field of the vacancy can be simulated by that of a cavity 
in an elastic continuum. In this simplified model the 
displacement function can be written [for example see 
Thompson (1969)] as R(r)= (--r3o/r2)[3v/(3v + 2pr0)], 
where in these calculations r 0 = 1 A and is the radius of 
the cavity, v = 0.1 e V A  -2 and is the surface energy, 
and p = 1 ev A -a and is the shear modulus. 

The solid vertical lines in Figs. 2 and 3 indicate the 
image shift predicted by (7). In all cases the images 

calculated with the column-approximation equation are 
centered on the x coordinate of the defect, while the 
geometrically predicted position of the principle image 
feature of the parabolic-equation calculations lines up 
nicely with the largest fringe. 

Another feature of the parabolic equation is the 
presence of additional fringes. These fringes are the 
oscillatory piece of the Green function, A, and were 
explicitly determined from Bessel functions in the two- 
beam case. Figs. 2 and 3 demonstrate that when a point 
defect is imaged with the gth maxima these fringes 
begin at about xg and decay in a direction opposite to g. 
In Fig. 2 we also see that as the distance between the 
vacancy and the exit surface of the crystal increases, so 
too does the number of fringes. In Lewis & Villagrana 
(1975) there was a simple rule for the two-beam case: 
roughly, one fringe is added per extinction distance, as 
measured from the point defect to the exit surface. 
However, just as many-beam thickness fringes exhibit a 
complicated behaviour, one can expect this simple two- 
beam rule to lose validity in our case here. 

There is somewhat of an analogy between these 
fringes and the phenomenon of Brillouin precursors, 
first discussed by Brillouin and Sommerfeld in 1914 
(see Brillouin, 1960). These precursors occur when a 
wave pulse propagates (via Maxwell's equations) in a 
dielectric medium: the first thing to arrive on the other 
side is a very high frequency oscillation which 
propagates with the speed of light in vacuum and then, 
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Fig. 2. Computed --g images of a vacancy. In this and the remaining figures the origin of the distance scale has the same x coordinate as 
the defect; and the solid vertical line indicates the predicted image shift. The equations used for the calculation, specimen thickness, and, 
when appropriate, the image shift predicted by (7) are: (a) parabolic, 500 ,~,, -7 .2 /~ ;  (b) column approximation, 500/~; (c) parabolic, 
700/~,, -21.7/~;  (d) column approximation, 700/~; (e) parabolic, 1000 A, -43 .4  A; and ( f )  column approximation, 1000/~. 
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after the precursors, the original wave packet shows up. 
In our case, we have somewhat the reverse: the main 
signal is always 'on the light cone' and showing up 
'later' are the rapidly oscillating fringes. The analogy 
occurs because this behaviour is common to all hyper- 
bolic (wave) operators. 

3.2. Line defect 

Howie & Sworn (1970) noticed in their calculations 
that when a weak-beam image of a dislocation was 
calculated without using the column approximation, it 
was shifted laterally with respect to the column- 
approximation calculation. Humphreys & Drummond 
(1976) add to this observation that the amount of 
image shifting seems to increase linearly with z e. In this 
section we should like to demonstrate that this shifting 
is also predicted by (7). In order to show this, we will 
replace the vacancy with a dislocation that lies on a 
(111) plane and has dissociated according to the 
reaction: a/2[101] --, a/61211] + a/6[112]. We will 
further assume that the lateral separation of the partials 
is 40 A, and that all the other crystal and diffraction 
parameters are the same as those used in the vacancy 
calculations. 

Some results of the dislocation calculations are 
presented in Figs. 4 and 5. Here we see that (7) predicts 
the image shift quite well. What is also rather apparent 
in these figures is that the fringing is associated with the 
principle image features. For example, in Fig. 4(a) we 
see that each partial-dislocation peak has fringing 
rather than the fringing occurring at a single point. 

Another striking feature of these calculations, aside 
from the image shifting and fringing, is the correspon- 
dence that exists between the images calculated both 
with and without the column approximation. Generally, 
this will not be the case; one can easily design situations 
involving dislocations at different depths where this 
correspondence would not hold because of image 
overlap. Finally, there is an interesting image behaviour 
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Fig. 3. Computed 4g images of a vacancy in a crystal 1000 /k 
thick. In (a) the parabolic equation was used, and the amount of 
image shift predicted by (7) is 43.4 /k. The column-approxi- 
mation equation was used to calculate (b). 

seen in the - g  reflection that is independent of the 
column approximation. Note in Fig. 4(a) and (b) that 
the peaks corresponding to both partials are in phase, 
while in Fig. 4(c) and (d) they are out of phase. Now 
since both partial dislocations are at the same depth, 
their respective peaks should oscillate in phase if the 
scattering is maximized at the respective dislocation 
cores. The fact that they are not in phase indicates that 
the scattering is maximized at slightly different 
positions in the respective strain fields of the partial 
dislocations. 
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parabolic, 1000 ]k, -43.4  /~; (d) column approximation, 1000 
A. 
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Fig. 5. Computed 4g images of a dissociated dislocation in a 

crystal I000 A thick. In (a) the parabolic equation was used, and 
the amount of image shift predicted by (7) is 43.4 A. The 
column-approximation equation was used to calculate (b). 
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4. Concluding remarks 

It is safe to say that the preponderance of our present 
knowledge about the electron-microscope contrast 
behavior of defects in crystals was obtained using 
diffraction equations based upon the column approxi- 
mation. However, the use of these equations to describe 
defect contrast under high-resolution conditions is 
dangerous. In this paper we have demonstrated two 
ways (image shifting and fringing) in which the column- 
approximation equations fail to predict contrast for 
point and line defects. However, we have not discussed 
the visibility of the fringing. Our feeling is that if it can 
be resolved, it will most probably be visible in weak- 
beam images of point defects and very small precipitates. 
Of course, this question will only be answered by the 
experimentalist. In a future paper we will discuss the 
effect of the column approximation on the calculation 
of images of planar defects. 

The authors would like to thank Dr A. Lannes for 
helpful discussions, and Mr D. R. Wall and Ms B. J. 

Jones for assistance in the final preparation of this 
manuscript. 
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Normalized Structure Amplitude for Use in Intensity Statistics 
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Abstract Introduction 

Centric and acentric cumulative distribution functions 
of the normalized structure amplitude, which explicitly 
account for the presence of outstandingly heavy atoms 
in crystals of any symmetry, have been derived. These 
cumulative distributions can now be readily evaluated 
for all triclinic, monoclinic and orthorhombic space 
groups, with the exceptions of Fdd2 and Fddd, and 
thus constitute an extension of the commonly employed 
cumulative distributions based on the Wilson statistics. 
Expected discrepancies between the distributions 
derived in this work and the corresponding Wilson-type 
distributions are illustrated, and their symmetry and 
composition dependence is discussed in view of relevant 
applications to intensity statistics. 

0567-7394/79/020282-05501.00 

The known methods of intensity statistics, which are 
applicable to the resolution of space-group ambiguities, 
can be classified into (A) computation of an experi- 
mental average of a function of the structure amplitude 
and comparison of this average with its theoretical 
expectation values for the possible space groups, and 
(B) comparison of experimental and theoretical dis- 
tributions of the normalized intensity or structure 
amplitude. Most existing methods of both classes are 
based on the Wilson (1949) statistics, according to 
which the structure amplitude from an equal-atom 
structure, with a large number of atoms in the unit 
cell, is normally distributed, the distribution parameters 
being different for the centrosymmetric and noncentro- 
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